IN SILICO STUDY ON THE MECHANISM OF ACTION OF VERNONIA AMYGDALINA ASTERACEAE IN TREATING TYPE 2 DIABETES
Main Article Content
Abstract
Objectives: To explore the mechanism of action of Vernonia Amygdalina (VA) Asteraceae at an atomic level. Methods: In silico techniques, including network pharmacology and molecular docking, were used to predict the molecular mechanism of VA by identifying potential therapeutic targets of VA in diabetes. The important network, consisting of the compound - target network, protein- protein interaction network, and hub target-pathway network, was developed using Cytoscape 3.9.0. Molecular docking using Autodock Vina 1.1.2 was conducted to identify the potential targets and compounds of VA related to the anti-diabetes bioactivity of VA. Results: Insulin resistance was explored as the main mechanism of anti-diabetes of VA. The potential compounds including P1 (luteolin), P5 (scutellarein), P15 (6.8-diprenylnaringenin), P16 (eriodictyol), P25 (ononin), T20 (aglycon của vernoniamyosid D) and five molecular targets (EP300, EGFR, MAPK8, SRC, TNFα) were identified. Conclusion: Through network pharmacology and molecular docking, insulin sensitivity was considered the main molecular mechanism of VA against type 2 diabetes.
Article Details
Keywords
In silico, Vernonia amygdalina Asteraceae, Type 2 diabetes, Network pharmacology, Molecular docking, Molecular mechanism
References
173. DOI:10.1002/ptr.2650060318
2. Aba PE, Udechukwu IR. Comparative hypoglycemic potentials and phytochemical profiles of 12 common leafy culinary vegetables consumed in Nsukka, Southeastern Nigeria. Journal of Basic and Clinical Physiology and Pharmacology. 2018; 29(4):313-320. DOI:10.1515/jbcpp-2017-0134
3. Nguyễn Thị Chi, Phạm Việt Trang, Lê Xuân Tiến, Nguyễn Văn Thanh. Nghiên cứu khả năng kháng oxy hóa và ức chế enzym α-glucosidase của cao chiết từ lá cây lá đắng (Vernonia amygdalina Del.), họ Cúc (Asteraceae). Tạp chí Dược học. 2018; 507:25-29.
4. Nguyễn Văn Đàn, Nguyễn Thị Nguyên Sinh, Bùi Chí Bảo, Trịnh Thị Diệu Thường. Bước đầu đánh giá hiệu quả giảm đường huyết sau ăn trên người bệnh đái tháo đường týp 2 của bài thuốc nam sưu tầm trên địa bàn tỉnh Sóc Trăng. Tạp chí Y học Thành phố Hồ Chí Minh. 2018; 22(3):417.
5. Zhang R, Zhu X, Bai H, Ning K. Network pharmacology databases for traditional Chinese medicine: Review and assessment. Frontiers in Pharmacology. 2019; 10:123. DOI:10.3389/fphar.201
6. Huang Q, Liu R, Liu J, et al. Integrated network pharmacology analysis and experimental validation to reveal the mechanism of anti-insulin resistance effects of Moringa oleifera seeds. Drug Design, Development and Therapy. 2020; 14:4069. DOI:10.2147/DDDT.S265198
7. He D, Huang J-H, Zhang Z-Y, et al. A network pharmacology-based strategy for predicting active ingredients and potential targets of LiuWei DiHuang pill in treating type 2 diabetes mellitus. Drug Design, Development and Therapy. 2019; 13:3989. DOI:10.2147/DDDT.S216644
8. Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function,
efficient optimization, and multithreading. Journal of Computational Chemistry. 2010; 31(2):455-461. DOI:10.1002/jcc.21334
9. Wu X-m, Ren T, Liu J-F, et al. Vernonia amygdalina Delile extract inhibits the hepatic gluconeogenesis through the activation of adenosine- 5’monophosph kinase. Biomedicine and Pharmacotherapy. 2018;103:1384-1391. DOI:10.1016/j.biopha.2018.04.135
10. Ugoanyanwu FO, Mgbeje BI, Igile GO, Ebong PE. The flavonoid-rich fraction of Vernonia amygdalina leaf extract reversed diabetes-induced hyperglycemia and pancreatic beta cell damage in albino wistar rats. World J Pharm Pharm Sci [Internet]. 2015; 4(10):1788-802.