THE VALUE OF DIFFUSION MAGNETIC RESONANCE IN THE DIFFERENTIAL DIAGNOSIS OF MEDULLOBLASTOMA AND EPENDYMOMA FOSSA VENTRICULAR IN CHILDREN

Thị Điệp Nguyễn, Thị Phương Phạm, Nguyen Duy Hung

Main Article Content

Abstract

Objectives: This study was designed to investigate the value of apparent diffusion value (ADC) of magnetic resonance imaging in differentiating ependymoma and medulloblastoma.


Methods: Retrospective study was conducted on 64 pediatric patients with posterior fossa brain tumors who underwent biopsy and surgical diagnosis confirming the pathology as ependymoma or medulloblastoma. They underwent contrast-enhanced MRI scans at Viet Duc Friendship Hospital and National Children's Hospital from January 2020 to December 2023. The evaluation of ADC parameters (mean, max, min) was performed using the whole tumor volume of interest (VOI) method.


Results: The ADC mean value has high differential diagnostic significance with AUC = 0.911, the cut-off value (sensitivity %, specificity %) is 844 x10-6m2/s (94%, 83%). The value of ADC min is meaningful, the diagnostic ability is lower with AUC = 0.743, the cut-off value of ADC min is 487 x10-6m2/s with Se of 75% and Sp of 90%.


The mean ADC and minimum ADC values help differentiate between ependymoma or medulloblastoma with p=0.01. Based on the mean ADC value (AUC 0.911), which provides better diagnostic accuracy compared to the minimum ADC value (AUC 0.43), at a cut-off ADC mean value of 844 x10-6m2/s for distinguishing between the two types of tumors, the sensitivity and specificity are 94% and 83%, respectively. At a cut-off ADC min value of 487 x10-6 mm2/s for distinguishing between the two types of tumors, the sensitivity and specificity are 75% and 90%, respectively.


Conclusion: The mean ADC and minimum ADC values at the solid part of the tumor are significant in distinguishing between ependymoma and medulloblastoma.

Article Details

References

1. Duc NM. The impact of ADC-histogram parameters on the discrimina-tion between medulloblastoma, ependymoma, and pilocytic astrocytoma. Clin Ter. 2022; 173(4):369-376. DOI: 10.7417/ CT.2022.2448.
2. Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol (Berl). 2007; 114(2): 97-109. DOI: 10.1007/s00401-007-0243-4.
3. Trần Phan Ninh. Nghiên cứu đăch điểm hình ảnh và giá trị của cộng hưởng từ trong chẩn đoán một số u não vùng hố sau ở trẻ em. Luận án Tiến sĩ Y học, Trường Đại học Y Hà Nội. 2018.
4. Duc NM, Huy HQ. Magnetic resonance imaging features of common posterior fossa brain tumors in children: A preliminary vietnamese study. Open Access Maced J Med Sci. 2019; 7(15):2413-2418. DOI: 10.3889/oamjms. 2019.635.
5. Nguyễn Minh Đức. Nghiên cứu xây dựng mô hình chẩn đoán một số u não hố sau thường gặp ở trẻ em dựa trên cộng hưởng từ đa thông số. Luận án Tiến sỹ Y học. Trường Đại học Y Hà Nội. 2021.
6. Rasalkar DD, Chu WCW, Paunipagar BK, Cheng FWT, Li CK. Paediatric intra-axial posterior fossa tumours: Pictorial review. Postgrad Med J. 2013; 89(1047):39-46. DOI: 10.1136/postgradmedj-2011-130075.
7. Rumboldt Z, Camacho DLA, Lake D, Welsh CT, Castillo M. Apparent diffusion coefficients for differentiation of cerebellar tumors in children. AJNR Am J Neuroradiol. 2006; 27(6):1362-1369.
8. Alexander AL, Tsuruda JS, Parker DL. Elimination of eddy current artifacts in diffusion-weighted echo-planar images: The use of bipolar gradients. Magn Reson Med. 1997; 38(6):1016-1021. DOI: 10.1002/mrm.1910380623.
9. Payabvash S, Tihan T, Cha S. Volumetric voxelwise apparent diffusion coefficient histogram analysis for differentiation of the fourth ventricular tumors. Neuroradiol J. 2018; 31(6): 554-564. DOI: 10.1177/1971400918800803.
10. Duc NM, Huy HQ, Nadarajan C, Keserci B. The Role of Predictive Model Based on quantitative basic magnetic resonance imaging in differentiating medulloblastoma from ependymoma. Anticancer Res. 2020; 40(5):2975-2980. DOI: 10.21873/anticanres.14277.