RESEARCH ON THE VALUE OF MACHINE LEARNING MODELS IN DIAGNOSING SIGNIFICANT LIVER FIBROSIS BASED ON 2D ULTRASOUND AND LIVER BIOCHEMICAL TEST DATA

Duy Chi Le1, , Anh Khoa Nguyen2, Minh Hai Nguyen1, Thi Hoang Oanh Nguyen1, Thi Dieu Huong Pham1, Dinh Khanh Hoang1, Vu Thang Nguyen1, Thi Van Anh Nguyen3, Van Viet Pham4, Dinh Anh Hoang1
1 Khoa Siêu âm, Bộ môn - Trung tâm Chẩn đoán hình ảnh, Bệnh viện Quân y 103, Học viện Quân y
2 Khoa Trí tuệ Nhân tạo, Trường Đại học Chang Gung, Đài Loan
3 Khoa X-quang Chẩn đoán, Bộ môn - Trung tâm Chẩn đoán hình ảnh, Bệnh viện Quân y 103, Học viện Quân y
4 Khoa X-Quang Can thiệp, Bộ môn - Trung tâm Chẩn đoán hình ảnh, Bệnh viện Quân y 103, Học viện Quân y

Main Article Content

Abstract

Objectives: To evaluate the value of machine learning models in diagnosing significant liver fibrosis (≥ F2) based on routine ultrasound and liver biochemical data. Methods: A cross-sectional descriptive study was conducted on 138 patients with liver disease (hepatitis B, hepatitis C, alcohol-related liver disease, and nonalcoholic fatty liver disease) from January to December 2020. Patients were assessed using biochemical tests (AST, ALT, GGT), 2D ultrasound, and Fibroscan to classify liver fibrosis severity (F0 - F1 vs. F2 - F4). Three machine learning models (decision tree, random forest, and gradient boosting) were developed to classify ≥ F2 fibrosis using blood test and 2D ultrasound data, with 80% of the data for training and 20% for testing. Results: In the training dataset, the diagnostic performance of the machine learning models yielded area under the curve (AUC) values of 0.85, 0.93, and 0.96 for decision tree, random forest, and gradient boosting, respectively. In the testing dataset, AUC values were 0.84, 0.88, and 0.89, respectively. Conclusion: Machine learning models demonstrated high diagnostic performance for significant liver fibrosis, supporting physicians in non-invasively assessing the degree of liver fibrosis in patients with liver disease.

Article Details

References

1. Trần Việt Tú. Nội tiêu hóa. Tái bản lần thứ nhất. Nhà xuất bản Quân đội nhân dân, Hà Nội. 2011:258.
2. Thampanitchawong P, Piratvisuth T. Liver biopsy: Complications and risk factors. World Journal of Gastroenterology. 1999; 5(4):301.
3. Mahady SE, Macaskill P, Craig JC, et al. Diagnostic accuracy of noninvasive fibrosis scores in a population of individuals with a low prevalence of fibrosis. Clinical Gastroenterology and Hepatology. 2017; 15(9):1453-1460. e1.
4. Sarker IH. Machine learning: Algorithms, real-world applications and research directions. SN Computer Science. 2021; 2(3):160.
5. Feng G, Zheng KI, Li YY, et al. Machine learning algorithm outperforms fibrosis markers in predicting significant fibrosis in biopsy‐confirmed NAFLD. Journal of Hepato‐Biliary‐Pancreatic Sciences. 2021; 28(7):593-603.
6. Bộ Y tế Việt Nam. Hướng dẫn chẩn đoán và điều trị bệnh viêm gan vi rút B, Hà Nội. 2019:2-3.
7. Bộ Y tế Việt Nam. Hướng dẫn chẩn đoán và điều trị bệnh viêm gan vi rút C. Hà Nội. 2016:2.
8. Thursz M, Gual A, Lackner C, et al. EASL clinical practice guidelines: Management of alcohol-related liver disease. Journal of hepatology. 2018; 69(1):154-181.
9. Trần Bảo Nghi. Nghiên cứu xơ hóa gan ở bệnh nhân bệnh gan mạn bằng đo đàn hồi gan thoáng qua đối chiếu với mô bệnh học. Luận án Tiến sỹ Y học, Đại học Y dược Huế. 2016.
10. Trần Thị Khánh Tường, Hoàng Trọng Thảng. Đánh giá xơ hóa gan bằng kỹ thuật ghi hình xung lực xạ âm và chỉ số tỷ lệ aspartate aminotransferase trên tiểu cầu trong bệnh gan mạn. Tạp chí Y Dược học-Trường Đại học Y Dược Huế. 2015; 25:58-70.