SỰ TÁC ĐỘNG LÊN THAY ĐỔI ĐIỆN NÃO ĐỒ TRONG GÂY MÊ CỦA MỘT SỐ THUỐC MÊ THƯỜNG DÙNG

Đăng Thứ Nguyễn1, , Đắc Tiệp Trần1, Hoài Nam Trần1, Văn Hiển Võ2, Văn Lợi Đỗ3
1 Bộ môn - Khoa Gây mê, Bệnh viện Quân y 103, Học viện Quân y
2 Khoa Gây mê, Bệnh viện Bỏng Quốc gia Lê Hữu Trác, Học viện Quân y
3 Trung tâm Gây mê hồi sức, Bệnh viện Đại học Phenikaa

Main Article Content

Abstract

Using electroencephalogram (EEG) monitors to assess the depth of anesthesia has become increasingly prevalent due to their accuracy and reliability in detecting intraoperative neurophysiological brain states. These devices typically provide outputs such as EEG-derived indices, EEG spectrograms, and raw EEG data. While EEG-derived indices offer a simplified and rapid means to determine the depth of anesthesia, it is often assumed that the same index value reflects an equivalent level of unconsciousness across different anesthetic agents. However, anesthetics target distinct molecular mechanisms and neural circuits, resulting in unique brain states. To fully appreciate the validity and reliability of depth of anesthesia assessments, it is essential to understand how EEG characteristics change depending on the anesthetic used. This review aims to explore the specific molecular and neural circuit targets, as well as the characteristic raw EEG patterns spectrogram signatures, and behavioral alterations induced by common anesthetic agents.

Article Details

References

1. Laferrière-Langlois P, Morisson L, Jeffries S, Duclos C, Espitalier F, Richebé P. Depth of anesthesia and nociception monitoring: Current state and vision for 2050. Anesth Analg. 2024; 138(2):295-307.
2. Manohara N, Ferrari A, Greenblatt A, Berardino A, Peixoto C, Duarte F, et al. Electroencephalogram monitoring during anesthesia and critical care: A guide for the clinician. J Clin Monit Comput. 2025; 39(2):315-348.
3. Hight DF, Kaiser HA, Sleigh JW, Avidan MS. Continuing professional development module: An updated introduction to electroencephalogram-based brain monitoring during intended general anesthesia. Can J Anaesth. 2020; 67(12):1858-1878.
4. Schnetz MP, Reon BJ, Ibinson JW, Kaynar M, Mahajan A, Vogt KM. Bispectral index changes following boluses of commonly used intravenous medications during volatile anesthesia identified from retrospective data. Anesth Analg. 2024; 138(3):635-644.
5. Purdon PL, Sampson A, Pavone KJ, Brown EN. Clinical electroencephalography for anesthesiologists: Part I: Background and basic signatures. Anesthesiology. 2015; 123(4):937-60.
6. Choi BM. Characteristics of electroencephalogram signatures in sedated patients induced by various anesthetic agents. J Dent Anesth Pain Med. 2017; 17(4):241-251.
7. Schüler SS, Petersen CL, West NC, Ansermino JM, Merchant RN, Görges M. The effect of ketamine on depth of hypnosis indices during total intravenous anesthesia-a comparative study using a novel electroencephalography case replay system. J Clin Monit Comput. 2021; 35(5):1027-1036.
8. Seo KH, Kim K, Lee SK, Cho J, Hong JH. Changes in electroencephalographic power and bicoherence spectra according to depth of dexmedetomidine sedation in patients undergoing spinal anesthesia. Int J Med Sci. 2021; 18(10):2117-2127.
9. Guessous K, Touchard C, Glezerson B, Levé C, Sabbagh D, Mebazaa A, et al. Intraoperative electroencephalography alpha-band power is a better proxy for preoperative low MoCA under propofol compared with sevoflurane. Anesth Analg. 2023; 137(5):1084-1092.
10. de Heer IJ, Raab HAC, Krul S, Karaöz-Bulut G, Stolker RJ, Weber F. Electroencephalographic density spectral array monitoring during propofol/ sevoflurane coadministration in children, an exploratory observational study. Anaesth Crit Care Pain Med. 2024; 43(2):101342.